

04-0-A1-25V01

機械安全くロボット安全>

~Sler向け~

書籍

内容

は	t じめに	3
1	ロボット安全の背景	4
	1-1 ロボットによる労働災害	4
	1-2 産業用ロボットと産業用ロボットシステム	7
	1-3 ロボットシステムインテグレータ(SIer)	9
	1-4 技術者倫理と安全	13
2	機械安全復習	14
	2-1 機械安全とは	14
	2-2 事故防止に対する考え方を根本から逆転させる	15
	2-3 危険源に着目する	16
	2-4 安全とリスク	18
	2-5 自己宣言のスタンス	19
3	ロボットに関する国内法令	21
	3-1 国内法令概要	21
	3-2 特別教育に関する法令	22
	3-3 保護方策に関する法令	22
	3-4 保護方策に関する指針	25
4	ロボットに関する国際規格	26
	4-1 ICS ⊐ − F	26
	4-2 各規格概要	27
5	リスクアセスメント	29
	5-1 ロボットの特徴	29
	5-2 ロボットシステムの制限	31
	5-3 危険源の同定	32
	5-4 リスクの見積、リスクの評価	36
6	リスク低減	37
	6-1 ロボットシステムのリスク低減基本戦略	37
	6-2 空間	38
	6-3 非党停止と保護停止	30

	6-4 自動モードと手動モード	43
	6-5 材料の搬出入口に対する安全防護	46
7	′協働作業のポイント	48
	7-1 協働ロボットの用途の概念	48
	7-2 協働作業におけるリスク低減基本戦略	51
8	8 機能安全(簡易版)	60
	8-1 安全機能と機能安全	60
	8-2 安全側故障と危険側故障	62
	8-3 安全関連部と非安全関連部	62
	8-4 安全コンポーネント	63
	8-5 危険側故障率と PFH _D 、PL、SIL	64
	8-6 ロボットシステムの性能要求事項	66
	8-7 安全関連部設計のための反復的プロセス	67
	8-8 安全機能の同定と要求特性の指定	68
	8-9 要求 PLr の決定と安全機能設計	69
	8-10 PL の見積	69
	8-11 PL の検証と妥当性確認	74
紁	冬わり に	75

付録

- ・ロボットによる災害事例
- ・ロボット関連規格一覧

はじめに

本書はロボットベンダー、システムインテグレータ、関連機器メーカ等これからロボットシステムに関わる 担当者が、その安全をいかに確保するかについて自学習するための書籍である。原文では理解が難しい法令 及び規格の内容について、その主な内容を解説する。

本書の読者像として ISO 12100 及び労働安全衛生法 28 条の 2 関連の機械安全の基本的な知識を有していることを前提としている。本書を読み解く上で基礎的な部分の知識が足りないと実感した場合は、改めて機械安全の基礎的な知識を学び直すことを推奨する。

また、あくまでも規格、法令の概要を説明しているだけなので実務に適用する場合においては必ずその原文 を参照することが必要である。

1 ロボット安全の背景

1-1 ロボットによる労働災害

産業用ロボットはあらかじめ作成されているプログラムの通りに同じ動きを繰り返すので、離れて見ている ぶんにはそれほど危険であるとは感じないかもしれない。しかし、産業用ロボットとは大きな質量のものを 高速、高精度で動かすことが目的としているため、力が大きく剛性が高くまた自重も重い。もし、その動作 範囲内に人間が入り込んでしまい殴られるということになれば、死亡につながるほどの危険性を持った機械 である。昨今は協働作業ロボットという力、剛性、自重の小さなロボットも用いられるようになっている が、これも扱い方を誤れば重篤な危害をもたらす可能性がある。

実際に様々な事故がロボットによって発生している。以下にいくつか事例を示す。(出展:労働新聞社_送検記事 https://www.rodo.co.jp/column/column_category/souken/)

産業用ロボットと容器に挟まれ窒息死 パン菓子製造業者を書類送検 名古屋北労基署

愛知・名古屋北労働基準監督署は、産業用ロボットとの接触防止措置を講じなかったとして、パン菓子製造業の㈱エフベーカリーコーポレーション(愛知県春日井市)と同社常務取締役を労働安全衛生法第20条(事業者の講ずべき措置等)違反の疑いで名古屋地検に書類送検した。

平成 29 年 3 月、同社名古屋工場で、労働者が、産業用ロボットと、パンなどを入れる薄型のプラスチック容器との間に首部を挟まれ、窒息死する労働災害が発生している。同社は、柵や囲いを設けるなどといった産業用ロボットとの接触防止措置を講じていなかった。

愛知県では、産業用ロボットに関する労災が、26年、27年にそれぞれ2件、28年に1件起きている。

産業用ロボットに挟まれ死亡 電気メッキ製造業を送検 富山労基署

富山労働基準監督署は、産業用ロボットの可動域に労働者が入らないよう措置を講じなかったとして、電気メッキ、金属プレス加工業の(株)ユニゾーン(富山県富山市)と同社製造部長を労働安全衛生法第20条(事業者の講ずべき措置等)違反の容疑で富山地検に書類送検した。平成28年8月、同社労働者が死亡する労働災害が発生している。

被災者は一人で、産業用ロボットを使って作業を行っていた際、何らかの理由で産業用ロボットの作業領域内に侵入し、ロボットに挟まれていた。

同社は、労働者がロボットに接触しないよう柵や囲いを設けるなどの対策を講じていなかった疑い。

この二つの事例は非常によく似ている事例である。本来であれば作業者がロボットの動作範囲に入ることは ないはずである。しかし、何らかのトラブルが生じた場合にはその修正のために作業者はロボットの動作範 囲に入ろうとする。おそらく作業手順書にはロボットを停止させてから近づくように記述されているはずだが、「ついうっかり」「急いでいたので」「ちょっとしたことだから」とロボットを停止させずに近づき、ロボットと周辺物との間で挟まれている。後述するが労働安全衛生規則ではこういった事故がおきないように、ロボットに柵又は囲いを設けることが求められている。こういった保護方策が不十分であれば、事故につながる。

製造ラインで産業用ロボットに挟まれ死亡 自動車部品製造業者を送検 浜松労基署

静岡・浜松労働基準監督署は、産業用ロボットの検査に関する特別教育を行わなかったとして、自動 車部品製造業の平岡ボデー(株)(静岡県浜松市西区)と同社取締役製造本部長を労働安全衛生法第59条(安 全衛生教育)違反の容疑で静岡地検浜松支部に書類送検した。

同社は、平成 28 年 6 月に死亡労働災害を起している。故障した産業用ロボットの修理を終えたライン 責任者が安全プラグを挿入したところ、異常解除待ち状態だった別のロボットが動き出した。被災者 はライン内で清掃作業に従事していたが、動き出したロボットと台との間に挟まれている。

同労基署が調査に入ったところ、同社が検査等に関する安全のための特別教育を受けていないライン 責任者に対して、ロボットの修理を行わせたことが発覚した。

この事例では労働安全衛生法の上では特別教育をしていないということで責任を問われている。しかしなが ら、国際規格の要求事項と照らし合わせるとインタロックの設計にも不備があるといえる。インタロックの 基本として扉を閉じただけで機械が起動してはならないという条件がある。また、安全プラグは故障耐性及 び無効化防止策の観点から適切なインタロック装置とは言えない。

この他にも厚生労働省の「職場のあんぜんサイト」に掲載されている死亡災害データベースでは、平成 4~30年のデータのうち起因物(小分類)がロボットとなっている事例が 41 件ある。巻末に付録として掲載したので、確認されたい。実際にどのような事故が起きているのかを知っていなければ危険だとも思わないし、知らないことには対処のしようもない。安全の担当者として実際にどのような事故があるのか知ることははじめの一歩であり最も重要なことでもある。

次に厚生労働省の労働災害統計確定値から起因物別の死亡災害と死傷災害のデータを示す。

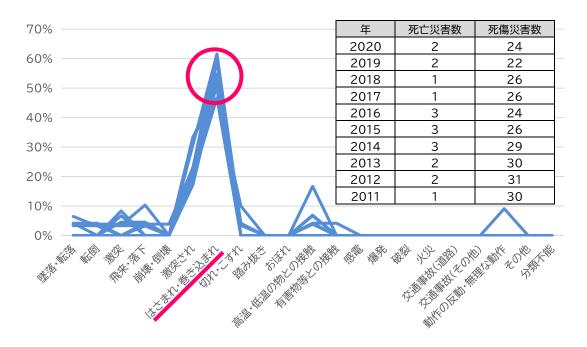


図 1-1 ロボットを起因物とする労働災害発生状況

これを見ると毎年約3件の死亡災害と約30件の死傷災害がロボットによって引き起こされていることが分かる。また事故の型で言えば、挟まれ巻き込まれが突出して多く約50%を占めている傾向は毎年変わっていない。

こういったロボットによる労働災害をいかに防止するのかが本書のテーマである。

1-2 産業用ロボットと産業用ロボットシステム

まず、産業用ロボットとは何かその定義を明らかにしたい。

ISO10218-1: 2011(JIS B 8433-1: 2015)

産業オートメーション用途に用いるため、位置が固定又は移動し、3 軸以上がプログラム可能で、自動 制御され、再プログラム可能な多用途マニピュレータ。

注記1 産業用ロボットは、次を含む。

- マニピュレータ(アクチュエータを含む)。
- 教示ペンダントを含む制御装置,及び通信インタフェース(ハードウェア及びソフトウェア)。 注記2 ロボットコントローラによって制御されるあらゆる追加軸を含む。 注記3 この規格の目的では、次の装置を産業用ロボットとみなす。
- ハンドガイドロボット。
- 移動ロボットのマニピュレータ部分。
- 協働ロボット。

労働安全衛生規則 第 36 条 31

マニプレータ及び記憶装置(可変シーケンス制御装置及び固定シーケンス制御装置を含む。以下この号において同じ。)を有し、記憶装置の情報に基づきマニプレータの伸縮、屈伸、上下移動、左右移動若しくは旋回の動作又はこれらの複合動作を自動的に行うことができる機械

共通しているのはマニピュレータ(マニプレータ)を有する自動制御された機械だということである。ここでいうマニピュレータとは人の腕を模した自由度の高い機構を有する装置のことであり、垂直多関節(6 軸ロボット)、水平多関節(スカラロボット)、パラレルリンク、直行という形式がある。以下にその構成を図示する。

図 1-2 産業用ロボットの構成

産業用ロボットそのものは「腕」でしかないので、それ単体では何かの役に立つことは無い。この「腕」に「手」を取り付けてさらに周辺に関連する装置を配置することによって、産業用ロボットは初めて役に立つ産業用ロボットシステムとなる。これらに関する用語の定義を下記に示す。

ISO10218-1: 2011(JIS B 8433-1: 2015)

産業用ロボットシステム(industrial robot system)

システムは、次を含む。

- 産業用ロボット
- エンドエフェクタ
- ー ロボットがタスクを行うために必要なあらゆる機械類,設備,装置,外部の付加軸又はセンサ。

産業用ロボットセル(industrial robot cell)

関連する機械類及び設備並びに関連する安全防護空間及び保護方策を含んだ 1 台以上のロボットシステム。

産業用ロボットライン(industrial robot line)

同一若しくは異なる機能を実行する一つ以上のロボットセル,及び単一又は連結された安全防護空間内にある関連設備。

統合生産システム(IMS)(integrated manufacturing system)

個別の部品又は組立品の製造,取扱い,移動又は包装のために、材料ハンドリングシステムを組み 合わせて、制御機器との相互接続がされた、協調して一緒に稼働する機械群。

どこまでが産業用ロボットセルでどこまでが産業用ロボットラインなのかといった各用語の厳密な区分けは 難しいが、包含関係は下記となる。

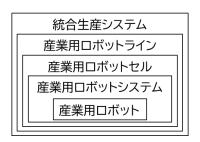


図 1-3 産業用ロボットシステムの用語の包含関係

これらの定義に基づく産業用ロボットシステムのイメージ図を下記に示す。

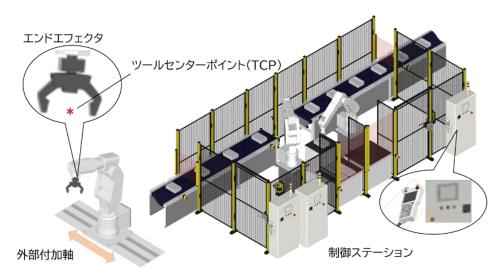


図 1-4 産業用ロボットシステムのイメージ図

ここで、エンドエフェクタとは「腕」である産業用ロボットに取り付けられる「手」である。これによってロボットは所望の機能を果たすことができる。例えば物を掴むためのハンド、溶接のためのトーチ、塗装のためスプレーガンがエンドエフェクタとなる。

エンドエフェクタはその位置を設定するためのツールセンターポイント(TCP)と呼ばれる仮想座標が設定される。一般的にはハンドであればその閉じた合わせ目、溶接トーチ、スプレーガンであればその先端が割り当てられる。

ロボットがタスクを行うために必要なあらゆる機械類、設備、装置にはベルトコンベア、カメラ、センサ及 びこれらを制御するための制御装置が多く用いられる。

外部軸とはロボットコントローラに接続し、ロボットの制御プログラムによって一緒に制御される付加軸である。例えば、産業用ロボットを直動スライダに乗せて移動させながら動かす場合に用いられる。

また、ロボットを直接操作するペンダントや操作盤は制御ステーションとも呼ばれる。

1-3 ロボットシステムインテグレータ(Sler)

産業用ロボットはそれそのものでは役割を果たすことができない「腕」であり半完成品である。これに「手」であるエンドエフェクタを取り付け、関連する機器や装置を組み合わせてロボットシステムを構築する者をロボットシステムインテグレータ(SIer)という。同じロボットであったとしても、どのようなロボットシステムにするかでまったく異なったものになるので、ロボットシステムを安全にする主役は SIer であると言える。

SIer は個人としての役割を指す名称ではなく、企業組織を表す名称である。したがってその業務範囲は営業、設計、製造、据付、サポートと非常に幅広い。産業用ロボットはこれからの少子高齢化社会における労働力確保の切り札と期待されているため、経済産業省が強く後押しをしている業種である。そのために下記の資料が一般に公開されている。

- ・ロボットシステムインテグレータのスキル読本
- ・ロボットシステムインテグレータスキル標準シート
- ・ロボットシステム インテグレーション 導入プロセス標準
- ・機能安全が可能にする機械の安全確保
- ・機能安全活用実践マニュアル産業用ロボットシステム編
- ・海外システムインテグレータ実態調査 2018

この中で「ロボットシステムインテグレータのスキル読本」の目次構成は下記のようになっており、安全対応が SIer の果たすべき重要な一項目になっている。

・組織体制・ロボット制御

· 生產技術 · 画像処理

・安全/品質対応 ・システム制御

機械設計電気配線電気設計機械組立

また、「ロボットシステムインテグレータスキル標準シート」は SIer として求められるスキルを項目ごとに レベル 1~7 まで区切って設定しており、その中の安全対応-リスクアセスメント能力は下記のようになって いる。この中で Lv5 では ISO12100 が、Lv7 ではセーフティリードアセッサが参照されている。読者におい ても改めて国際規格にきちんと準拠し、研鑽を積んで力量を備えていただきたい。

表 1-1 ロボットシステムインテグレータスキル標準シート リスクアセスメント能力

Lv1	リスクアセスメントについての知識がある。
Lv2	リスクアセスメントについての社内規程がある。
Lv3	会社としてリスクアセスメント業務従事者、妥当性検証者、外部委託業者についてスキル管理を実施し、実務年数等から適切に認定している。
Lv4	リスクアセスメントについての社内規程が適切に見直されている。
Lv5	社内リスクアセスメント規程が ISO12100(JIS B 9700)に準拠している。
Lv6	作業従事者の過半数以上が、安全性の妥当性確認に必要とされる基礎知識、能力を有し、リスクの抽出・見積り・評価・リスクの許容範囲内までの低減対策を実施できる。
Lv7	作業従事者の過半数以上が、本質安全設計及び妥当性確認に必要とされる幅広い知識、能力を有し(セーフティリードアセッサ相当)、リスクの抽出・見積り・評価・リスクの最小化許容範囲内までの低減対策を実施できる。

さて、安全上重要な役割を担う SIer ではあるが、今日の市場では非常に弱い立場に置かれていることが見受けられる。結果的に客先の要望を満たしたパフォーマンスを発揮しているぶんには問題は生じないが、ひとたび事故が起きてしまうと SIer にその責任が押し付けられるケースがある。SIer としては「ユーザの言うとおりにシステム構築したので、安全についてもユーザ側に責任がある」「自分たちはロボットや周辺装置、部品を組み合わせただけなのでそれぞれのメーカに責任がある」と言いたいかもしれない。しかしユーザは「自分たちは機械の専門家ではないからこそインテグレータに依頼したのだから安全については SIer に責任がある」と言ってくる。また、ロボット、周辺装置、部品の各メーカは「自分達はシステムの一部分を提供したにすぎないのでシステム全体としての安全について責任は負えない」という立場をとる。

悩ましいことに SIer は安全なシステムを構築する上で一般的な機械メーカ以上に難しい点がいくつかある。 まず一つ目は客先によって同じアプリケーションであっても構築するシステムは全く異なるということであ る。マテリアルハンドリングといっても扱うモノの形状、個数、レイアウト等は客先によって毎回違う。従 って安全に関しても同じパターンを踏襲するのではなく、客先の条件に合わせて考えなければならない。

第2に 技術的にも業界的にも新しいことが求められていて経験が少ないということがある。例えば旋盤などは 400 年以上の歴史があり、どのようにして安全を確保するか C 規格があり、業界としてメーカもユーザも十分な知見を持っている。しかし協働作業ロボットなどは市場に現れてからまだ年数が経っておらず、C 規格もなければメーカ、SIer、ユーザのいずれも手探り状態である。

第3に企業規模によるパワーバランスの問題がある。SIerの中には新たな技術で勝負しようとするベンチャー企業も多々見受けられる。そうすると大手ユーザからは将来の取引を見据えて不利な取引条件でも引き受けざるを得ないことがある。また、情報収集、法務、知財といった業務まで設計者自身で対応をせざるを得ず、十分な対応が取れないケースも見受けられる。

だからこそ必要なのは確かな力量とリスクコミュニケーション能力である。単に自身が分かってさえいればいいということではなく、関係各者に対してきちんと説明をし、理解してもらい、そして協力しながらシステムを構築していく関係性を作り上げることができなければならない。

1-4 技術者倫理と安全

とても便利なものであり、関係者皆に幸福を与えるはずのロボットシステムではあるが、同時に事故に至る リスクも内包している。技術者倫理といえば何やら難しく聞こえるかもしれないがその根源はいたって単純 な動機である。

- ・自身の関わるロボットシステムにおいて誰かにケガをして欲しくはない。
- ・最悪事故が起きてしまったとしてそれがお前のせいだとは言われたくはない。

では、そのために下記に関して正しい知識と十分なエビデンスに基づき自信を持って答えることができるだろうか。

- ・そもそも安全とは何か
- ・自身の関わるロボットシステムは安全だと言えるか
- ・なぜ安全だと言えるのか
- ・全ての関係者がそのことを理解しているか

本書及び規格や法令と言った関係資料を基に学習を重ね、是非これらの質問に答えられるようになってほしい。